93 10 18 1 82

———
Public 1¢ 1 hour per response. including the time fOr reviewing INstructions, searching existing data sources,
qatheny _— section of information Send comments regarding this burden estimate or any other aspect of this
collectic uNg on Headquarters Services. Directorate for information Operations and Reports, 1215 Jetferson
Davis M N “ “ 2 i { jement and Budget, Paperwork Reduction Project {(0704-0188), washington, DC 20503,
pes— {34 ] i Y ST
1. AG Al 1 3. REPORT TYPE AND DATES COVERED
Reprint N\
e e—
4. TN . -

Form Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

S. FUNDING NUMBERS z

D ARHOY-G3-6-0830

Title shown on Reprint

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

6. AUTHOR(S)

Authors listed on Reprint

8. PERFORMING ORGANIZATION
REPORT NUMBER

fw«ay&nm ,df”ﬁ'um“’

Umeneod le Pp 26702

11. SUPPLEMENTARY NOTES

e e—————————————
12a. DISTRIBUTION / AVAILABILITY STATEMENT

10. SPONSORING / MONITORING

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AGENCY REPORT NUMBER

U. S. Army Research Office
P. 0. Box 12211

Research Triangle Park, NC 27709-2211 Alo 305».2?.2571;/)-53[

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.
12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

ABSTRACT SHOWN ON REPRINT

24883
\WM\M\\\\&\\\M\M

—-
ELF’*?‘:A
0CT 211993 i .

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION ] 18. SECURITY CLASSIFICATION ] 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NG 7540 O

ZRN.S50N

Stardard Farm 29R (Rey 2 RQ)

Pro. - .




Journal of Statistical Planning and Inference 36 (1993) 77-90 77
North-Holland

MANOVA type tests under a convex
discrepancy function for the standard
multivariate linear model

Z.D. Bai

Temple University, Philadelphia, PA, USA

C. Radhakrishna Rao and L.C. Zhao*

Pennisyivanmia State University, University Park, PA, USA

Received 8 November 1990; revised manuscript received § February 1992
Recommended by P.K. Sen

Abstract: We provide the M-theory for the standard multivaniate linear mode! Y = XB + E. where Yisnxp
matrix of observations. X is n x m design matrix. B is m x p matrix of unknown parameters and E is nxp
matrix of errors with the row vectors independently distributed. Two test criteria based on the roots of
determinantal equations are proposed for testing linear hypotheses of the form P’B = C,. where P is a matrix
of rank ¢. The tests are similar to thosc considered in MANOVA using least squares techniques. One of them
is the Wald type statistic and another is the Rao’s score type statistic. The asymptotic distributions of these test
statistics are derived. Consistent estimates of nuisance parameters are obtained for use in computing the test
statistics.

The M-method of estimation considered is the minimization of Tp(e,). where p is a convex function and ¢,
15 the i-th row vector in ( Y- XB). All results are derived under a mimimal set of conditions.

AMS Subject Classification: 62H15. 62H10.

Key words and phrases. MANOVA; M-estimation; Rao’s score test; roots of determinantal equation: Wald
test.

1. Introduction

In a recent paper Bai, Rao and Wu (1992) considered the problem of estimation
and testing under the M-theory for the model

Yi=X/B+ei, (1.1)
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78 Z2.D. Bai et al. 7 MANOV A type tests

where Y, is a p-vector of observations, &; is a p-vector of errors, {X,} is a design se-
quence of m x p matrices and f is an m-vector of unknown parameters. The discus-
ston was confined to estimation of § by minimizing

"

Y oY, X/ B) (1.2)

t=1]

choosing any convex function ¢. The asymptotic distribution of £, the estimate so
obtained, was derived. For testing the hypothesis P'f=C,, the test criterion pro-
posed was the likelihood ratio type
min ¥ o(Y;— X/#)—-min ¥ o(Y,- X/B), (1.3)
P'g=Co B
which, under suitable normalization, has an asymptotic distribution which is a mix-
ture of chi-squares.
We now consider a special case of (1.1), the standard multivariate linear model

Y,=B'X;+¢;, i=1,...,n, (1.4)

where Y; and g; are as in the model (1.1), B is an m X p matrix of regression coeffi-
cients and {X;} is a design sequence of m-vectors. As in (1.2), we estimate B by
minimizing

!

o(Y,-B'Xj), (1.5)
=1

where ¢ is a covex function, and develop MANOVA type analysis leading to test
criteria based on the roots of a determinantal equation for testing hypotheses of the
type P'B=C,, where P is m X g matrix of rank gq.

2. Notations and assumptions

Let y(u) be a choice of a subgradient of ¢ at u=(uy,...,u,)". [A p-vector y(u)
is said to be a subgradient of ¢ at u, if o(2)2 o)+ (z—u) w(u) Yze R”.] Note
that if ¢ is differentiable at u# according to the usual definition, ¢ has a unique
subgradient at « and vice-versa. In this case

1
wu) =Vo(u) £ (a—", 33) .
du, du,
Denote by @ the set of points where g is not differentiable. This is, in fact, the set
of points where y is discontinuous, which is the same for all choices of . It is well-
known that @ is topologically a F, set of Lebesgue measure zero (ref. Rockafeller
(1970), p. 218 and Section 25).

We assume that y(u) is measurable and make the following assumptions as in

Bai, Rao and Wu (1992):

o —————

O ]
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(A,) The common distribution function F of ¢, satisfies F(®)=0. (This ensures that
certain functionals of y which appear in our discussion have unique values.)
(A;) Ew(e, +u)=Au+o(Jul) as |uj| —» 0, where A >0 is a p X p constant matrix.
(A;) Elw(g, +u)}? is finite for small ju| and is continuous at ¥ =0 as a function
of u.

(Ag) Elwenllw(en))' =I>0.
(As) S, =% X.X/>0,

i=1
and

d?= max X/S;'X;»0 asn-— oo,
Igign

We denote by B and B any values of B which minimize
n
L o(¥,-B'X)
i=
respectively without any restriction and subject to the restriction

P'B=C, @1

specified as a hypothesis, where P is a m X g matrix of rank g. Further let
n
$(B) = _Zl Xly(Y;—-B' X))’ 2.2)

which is an m X p matrix.
For testing the hypothesis P’'B = C,, we propose two alternative test criteria. One
is based on the roots of the determinantal equation

|W,—0A"'TA™'| =0, 2.3)
where
W,=(P'B—Cy)'(P'S;'P)y " (P'B-C,) .4

is the Wald type statistic, and (A, I’) is a consistent estimate of (A, "), the matrix
parameters defined in assumptions (A;) and (A,) respectively. In Section 5 of this
paper, we discuss the estimation of (A, I'). Another test is based on the roots of the
determinantal equation

[R,—6F| =0, 2.5)
where
R, =E(BY' S, E(B) (2.6)

is the Rao’s score type statistic (see Rao (1948)), and I is a consistent estimate of
I'. The asymptotic distribution of the roots of (2.3) or (2.5) is the same as that in
the normal theory, and hence the tests proposed by Fisher and Hsu (scc for instance
Rao (1973, pp. 556-560)) can be used.

It may be noted that tests of the above type were suggested by Sen (1982) and
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Singer and Sen (1985) in the multivariate situation under methods of M-estimation
and assumptions different from ours, and by Schrader and Hettmansperger (1980)
in the univariate case. Some papers of related interest are by Inagaki (1973), Heiler
and Willers (1988) and Juretkova (1983). It may be seen that our conditions are
somewhat simpler in view of the convexity of the loss function.

In Section 3, we state the main theorems and in Section 4, we provide proofs
under what we believe to be a minimal set of conditions. A new feature of the paper
is the discussion on consistent estimation of the nuisance parameters A and I”
without making any further assumptions on .

The results of the paper could be extended to other methods of M-estimation such
as those with scale invariance or those based on estimating equations only. But they
seem to need heavy assumptions for a rigorous treatment. It would also be of some
interest to consider rates of convergence and related problems. We hope to consider
such problems in future research.

3. The main theorems

For convenience, we write

X =S,"2X,, P,=(P'S,'P)y"V2P'5; V2, G.1)
so that

XinXin =1,  PoP,=1,, 3.2)

i=1
n
Up=A~" .El W(E) Xin Py = (U -+ Ugn), (3.3)
V= E] W(EN)XinPp = Wyps -1 Ugn)- (3.4)
i=

We also consider a sequence of alternatives to the null hypothesis P’'B=C,
H,: P'(B-By)=P’'4,, 3.5
where B, and A4, are known m X p matrices such that
P’'By=C, and |S)?4,]=0(), (3.6)
and denote
0,=P,;5\*A,=(P'S;'P)"'*P'4,. 3.7

It is easily seen that uy,, ..., u,, are asymptotically independent with the common
timiting distribution N,(0,47'I'A™"), so that the limiting distribution of U,U, is
central Wishart on g degrees of freedom, W,(q, A ~1rA~"). Similarly v, .... U, are
asymptotically independent with the common limiting distribution N(0, /"), so that

w1 ot 3 oy g -
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the limiting distribution of V,V, is central Wishart on g degrees of freedom,
Wy(q,TI).
We have the following theorems concerning the asymptotic distributions of W,

and R, under the null hypothesis and also under the sequence of alternative hypo-
theses (3.5).

Theorem 3.1. Assume that under the model (1.4), the assumptions (A;)-(As) and
condition (3.6) on the sequence of alternative hypotheses hold. Then

W,=U,+6,)(U,+8,)+0,(1) asn- . (3.8)

Especially, if the null hypothesis Hy holds or |S)?A,| -0 as n— o, then the
asymptotic distribution of W, is the central Wishart, Wp(q,A“l“ 'A™Y). If the local
alternatives ©,=(P’'S;'P) 2P’ A, has a limit ©® #0 as n - o, then the asymptotic
distribution of W, is the noncentral Wishart, W,(q,A"'TA~", @ ). [See Rao
(1973, p. 534) for the definition of noncentral Wishart distribution.)

Theorem 3.2. Suppose that under the model (1.4), the assumptions (A,)-(As) are
satisfied, and condition (3.6) holds. Then

Ry = (Vo + 0, A) (Vy+0,A)+0,(1) asn— oo, (3.9)

Especially, if Hy holds or |S}*A,] — 0 as n - o, the asymptotic distribution of R,
is the central Wishart, W,(q,I'). If the local alternatives ©, has the limit ©#0,
then the asymptotic distribution of R, is the noncentral Wishart, W,(q,1, A0’ ©A).

Note: The test based on W, involves two nuisance matrix parameters /" and A,
both of which need to be estimated for computing the test criteria. On the other
hand, the test based on R, involves only the nuisance matrix parameter /, which
only needs to be estimated. Further, the local power for the sequence of alternatives
considered depends on the magnitude of the roots of the equation

| @@—-AA"'TA™ Y =0 (3.10)
for the test based on W, and on the roots of the equation
[A@OA-A| =0 @3.11

for the test based on R,,. Since the roots of (3.10) and (3.11) are the same, the two
alternative tests are equally efficient asymptotically. In such a case, the test based
on R, may be preferred to that based on W, as only I” has to be estimated in the
former case and both I"and A have to be estimated in the latter case. This statement

is true only for large samples. The relative merits of these two tests remain to be
investigated in small samples.

NS,
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4. Proof of the main theorems

In the following, for a set A, I(4) denotes its indicator function. We write
B* = vec B = vec(B,:--:8,) = (Bis-.., By, “4.hH

and the same notation applies to other matrices.

To prove the theorems stated in Section 3, we need some lemmas. Without loss
of generality, we assume that Cy=0 in (2.1), i.e., Bo=0 in (3.5). There exists an
m X (m - q) matrix K of rank m — ¢ such that

P'K=0. (4.2)

Without loss of generality we can assume that K’4,=0. The hypotheses H;, and H,,
can be written as

Hy: B=KM,; for some (m~— q)Xp matrix M,,

H,: B=KM,+A,.
Define

P, =(P'S;'P)"'?P'S;'2, K, =S, K(K'S,K)""%. 4.3)
Then

KiKy=1l, 4,  PP,=1, PK,=0. 4.9)
If H, holds, the model (1.4) can be rewritten as

Y, = Br;/\,in'*’ Eiy (4.5)
where X;, = ;% X;, as defined in (3.1),

B, =K,M,+P,0,, (4.6)

M, =(K'S,K)'’My+K,S)?A4,, 4.7
and O, is derined by (3.7).

Put My, =(K’S,K)'"*M,. The model (1.4) under Hy has the form
Y, = (K,My,) Xip+&;. 4.8)

Denote by M, the M-estimate of M, i.e., M, is such that

Y oY, -MK;X,)= min Y o(Y;—M'K;X;,). (4.9)
i=1 M:(m-q)xpi=}

Note that the restricted M-estimate of B, is 8,=S,28 = K,M,.

Lemma 4.1. Suppose that (A|)-(As), (3.5) and (3.6) are satisfied. For any constant
¢>0 we have

sup

IG- Myl <c -Z, v (Y- G'K; X))~ w(Yi = By X))} ® Xy

i=

.
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+ARKNG*-MYN—(ARP,)O| -0 inpr., (4.10)

and

n
sup {o(Y;-G'K,;X;,) —o(Y; - B, X;,)}
IG-M,yi<gce |i=1

+[(O+g,(G*-M*)| >0 inpr., 4.11)

where

L0 =0} ¥ w(e) ® (P X)) 10} (A ® 1,)67, (4.12)
8(G*—M}¥) = (G*-M}) ¥ wie) ® (K, X;,)
—HG* - MFYA® L, NG*—M}). (4.13)

Note that (4.10) and (4.11) can be simply rewritten as

Sup Y {w(e;—B'X,)—y(e)} ® Xiy + (AR 1,)B*|| -0 in pr.
Bigc {li=1
(4.10)’
and
n
Sup _Zl{9(8,——B’X,~,,)—9(8,~)+B*’(u/(8,-)®Xm)}
gc |i=
—4$B*(A®1,)B*| -0 in pr. .11y

The proofs of (4.11)’ and (4.10)’ are similar to those of Theorems 2.1 and 2.3 in
Bai, Rao and Wu (1992). Note that when we use Theorem 25.7 in Rockafellar
(1970), we could remove the differentiable condition on {/}, regard V fi(x) as a
subgradient of f; at x, and only keep the differentiability condition on the limit
function f.

Lemma 4.2. Assume that (A|)-(As), (3.5) and (3.6) hold. Then

M,-M, = ¥ K, Xuw'(€)A™" +0,(1),
i=1

MY -M} =Y (A~ w(e)) ® KrXin) +0,(1). (4.14)
i=1

Especially for the unrestricted M-estimate B,=S)"*B of B,, we have

n
Bn'_Bn = 'El /‘,in'//’(ei)A-l +op<])’
i=

3 * * _
n—Bn =

(A7 'w(e)) ® X, +0,(1). (4.15)

it

{
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Proof. Write
n
M=Mn+ Z Kr;A,inW’(Ei)A'],
=1

=

or

M* =M+ T (A () ® (KoXo).
i=1

Since M* - M,* has an asymptotic normal distribution, we have
|M—M,| = O,(1). (4.16)
By (4.11), it follows that for any ¢>0 and 6>0,

o Sup al(llM—MnIISC) Y {o(Yi-G'K; X)) —o(Y,— MK, X,,)}
-M)= i=1

—HG*—M*Y (AR Ly NG*~M*)| =0,
in pr., 4.17)
and that for n large, the event (JM — M, | <c) implies that

n n
inf ¥ o(Y,-G'K,X,)2 ¥ o(Y;—M'K; X;p)+4, (4.18)
1IG-Mt=6i=1 i=1

for some A>0. By (4.18), (4.18) and the convexity of o, we get
P(M,-M|>3)—0 asn— o, 4.19)
and (4.14) follows.
Proof of Theorem 3.1. Without loss of generality we assume that Cy=0. Under
H,, we have from (4.6)
B,=K,M,+P,0,
(refer to (4.6), (4.7) and (3.7)). By (4.15) we have

B,=B,+ ¥ Xyuw'(€)A ™ +0,(1). (4.20)
i=1

By (2.4) and (3.1),

w,=BP@P'S;'P)'\P'B=B,P,P,B,. 4.21)
By (4.6), (4.20) and (4.4) we get
P,B,=U,+0, 4.22)

and the theorem follows from (4.21) and (4.22).

Proof of Theorem 3.2. Under H,, we have B,=K,M,+ P,0,. By (4.14),
IM, ~M,] = O,(1). (4.23)

neh sl a et o W S
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By (4.10) and (4.23),
_Zl {w(y, - B X)) - w(e)} ® X,
+ARKIM¥-M¥)—(AQP)YO*~>0 inpr., (4.24)
which implies that

Y (Y, - B, X)) - w(e) ® (K, X,,)

i=1
+(A® 1, _JM¥-M¥)-0 inpr., 4.25)
and

L Wi - B, X)) -y ® (P X,n)

-(A®1,)0F~0, inpr. (4.26)
By (4.14) and (4.25),
Z w(Y, - B, X,)®(K.X,;)=0 in pr., (4.27)

i

as n— oo, By (2.2), (2.6), (4.26) and (4.27), noting that K, K, + P,P,=1,, we have

R, = ( ¥ v/(Yi—Emﬂ)Xi;)( ¥ XY, B ,,,>>

i=1 J=1

S

WY~ B XK, )( T KXY, —E;X,-n)>
A

uM:
I wok!

w(¥, = BiX X, ) L Pixaw, -5,
J

(3 .

< w(e) X, P, +A@'>< Y P,;Xj,,q/’(sj)+@,,/|>+op(l), (4.28)
j=1

and Theorem 3.2 is proved in view of (3.4).

5. Estimation of the nuisance parameters

In practical applications, we need to estimate the nuisance matrix parameters I
and A. A natural estimate of I is

F=n"' Y w(Y,-B'X)y'(Y,~ B'X), (5.1)
i=1

where B is an M-estimate of B in the model (1.4). To estimate A, we take a pXp

e e
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nonsiaguiar matrix Z consisting of {,, ..., ¢, as its columns, takc /1 = b, >0 such that
h,/d.—» o, h,—»0 and lim io?f nh:>0, (5.2)
define "
Na = WY, - B'X;+ hl)—w(Y, - B'X, - h{,),
i=l...,n k=1...p, (5.3)
and use the p x p matrix

A :(2nh) ! E [’I:h---vﬂ:p]Z : (54)
i -

¢

as an estimate of 4. We have the following theorem:

Theorem 5.1. Assume that (A|)-(As) are satisfied in the model (1.4). Then
F=r in pr. as n — o (5.5)
Furthermore, if (5.2) also holds, then
A=A inpr.asn—o. (5.6)

Note that Zhao and Chen (1990) gave a proof for the special case of p=1.
However, the proof for the generai case of p is more complicated.

Proof. Put u=(Uy,...,up), uz(vl,...,u,,)’, w)=(y (), ....w, (). Write
O={0=(0,,...,6,): 8,,...,0,= + 1}. At first we show that, if v, <h/2 for some
b>0and k=1,..., p, there exists a constant ¢>0 such that

¢ Y Owu-b8)—w) < w (u+v)-w,(u)
ve @
<c Y Owlu+bo) -~ yu) (5.7)

e

and similar inequalities hold for w, (¥ +v) -y, (u), k=2,....p.

Note that 6'(w(u+b8)—w(u)) >0 and &'(w(u - b0) -~ w(u))<0 for any e O.

In fact, by the cyclical monotonicity of y (refer to Rockafellar, 1970, p. 238), for
any 8e ® we have

Vi (u)+(b6—v) wu+v)~ bl yw(u+b0)<0 (5.8)
which implies that

(60— v) (w(u+v) - W) < bY (w(u+ b)) — y(u)) (5.9)
and
b0+ v) (w(u+v) -y ) 2 b0 (w(u - bo) — w(u)). (5.10)

For simplicity we write 5=(9,,...,0p,,)’, U=y, ... up 1), u7=(u/,,...,u/,,,,)’,
and sometimes we write w(u') for w(u). Taking 6,=1and -1 in (5.9) we get

BB e L g b P s e

g
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(b - ) w(u+v)- w)) + (b= v, W,(u+v) - v,u))

<@, Dy @'+ b8, u,+ b) - y(u)} (5.11)
and
(bF — 0" (u+v) — W) — (b + v, (W, +v) = y,(u))

<O, -Diw @ + b8, u,— b) - yw)}. (5.12)
Multipiying both sides of (5.12) by (b -uv,)/(b+v),), and adding the inequality so
obtained to (5.11), we eliminate y, (¥ +v) ~ y,(u) from (5.11) and (5.12), and get
b/ (b+ v)bE — 5" Ww(u+v) ~ y(u))
<b(@, Diww' + b8, 1) - W)} + b(@, ~D{ww + b(@,-1)
— W)} (b -v,)/(b+u,). (5.13)
Now it is not difficult to get the second inequality of (5.7) by using the elimination

method step by step. The first inequality of (5.7) could be obtained simularly from
(5.10).

Without ioss of generality, we assume that the true parameter matrix B=0 in the
model (1.4). By (4.15) and B, =0, we have

P(|B,|=2d;"*) =0 asn— oo, (5.14)

By (A,) and the strong law of large numbers,
. n
r,=n'¥ wE)wie)>r=,, as., (5.15)
i=1

as n— oo. Putting I'=($,,), I,=»\"), we have

im

n 2
| Yim— y;"’")}Z = n—l 'Zl {u/l(ai - B;l)(in)u/nl(ai _Br’ﬂYm) - Wl(ai\Wm(ei)}
f=

n ) n .
<n”! L witei - B, X)) - wie)?-n”! 21 wi(e - B, X,,)

i=

47 L yle) n! L Wl BiXn) = yn(@). (5.16)

i=

On the event (|B,|<d,;'?), |B,X;,|<d)? for each i. By (5.7), there exists a
positive constant ¢ such that

n”! _; (wiei — BoXi) — wie)*1(1B,| <d; ')

n
<cmax{n" ¥ lwie+2d)20)—w(e)|*
=

i=

8=y, -...6,)", 01,...,9,,=¢1}. (5.17)
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By (A,) and (Ay), for fixed & we have

E{n“ T Wwte+24170) - w(e)I = Elw(er +24176) ~ w(e )i~ 0
! (5.18)
as n— oo, By (5.14) and (5.16)-(5.18), we get
Jm‘flm“?(")!=0 in pr., for Lm=1,..., p, (5.19)

im

which implies (5.5) in view of (5.15).
Now we proceed to prove (5.6). To this end, we prove that for any ¢>0,

(nh)™! }1.' (wite; — By Xin + h) ~ wile; + RGN (B, 1 <€) -0
inpr., I=1,...,p. (5.20)
By (5.7), in order to prove (5.20), it is enough to prove that for each fixed e @,
T, 2 (nh)"! il 0’ (wie;+2cd,0+h{)~ wig;+hi))—0
in pr., as n— o, (5.21)

By (A3), (As) and (5.2), we have
Var T, <(nh?) 'E[0'(y (g, + 2¢d,0 + h{) — w(e, + h{)))?
<) O E|wie) + 2,0+ h) - wie + hE)P » 0. (5.22)
On the other hand, by (A;), (As) and (5.2), we get
ET, = h "OE(w(e, +2cd,0+ hi,) - w(e, + h)) - 0. (5.23)
By (5.22) and (5.23), we get (5.21) and (5.20). Noting that |8, =0,(1), we have

n

(nh)™! _Zl (W(e;— By Xin+ h{ )~ Wi+ h{)) >0 in pr. (5.24)

In the same way, H

(nh)™! ,-‘i (W& - Bixi,~ hi) ~ wie;—h{) -0 in pr. (5.25)
By (A;) and (5.2), for m=1,...,p.

Var {(nh) ! il (Wm(ei xhl )~ w,,.(a,-))}

S(nhY) VEWm(e, £ hE) ~ wl€)))? ~ 0 as n— oo, (5.26)
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On the other hand, by (A,) and A, — 0, we have

(nhy ' Y E(w(e; +he) — wie, - )

i=1
=Qh) 'E(w(e, + §) - w(e, ~hG ) > AL, k=1,...,p. (5.27)

By (5.26) and (5.27), we have

2nh)~"! é:l (w(ei+hi) —wle;—h( ) = AL inpr., (5.28)
for k=1,...,p. By (5.24), (5.25), (5.28) and (5.3), it follows that

AZ = 2nh)~! __il (Mi1s s Mipl > AZ in pr., (5.29)
and (5.6) is obtained. Now Theorem 5.1 is proved.

Note 1. In estimating .1 and proving the consistency of the estimate, we have not
made any additional assumptions on . The only property used is its convexity. If,
however, g is twice differentiable, other estimates are possible, as in the case of the
least distances estimate considered by Bai, Chen, Miao and Rao (1990).

Note 2. A referee remarks that Theorem 5.1 can be proved by applying the convexity
lemma in a recent paper by Pollard (1991). It is true, but the detailed proof given
by us using similar ideas will be of help in solving similar problems. Pollard’s paper
which contains results similar to the earlier papers by Bai, Rao and Yin (1990) and
Chen, Bai, Zhao and Wu (1990) was not available to us when our paper was submit-
ted for publication.

Note added in proof. This work can be extended to a more general case where
0=0"—-0Y is a difference of two p-variate convex functions ¢'" and ¢® with
w () = wMu) — w®(u) being the difference of their subgradients at u. Assume that
(A,)~(As) are satisfied with @ and y in (4,)-(4s) being replaced by o'", ‘" and
0¥, w?®. We can construct the same test statistics with po=0"-0® and
w=w"—y®@ as before. It can be shown that, if the above conditions are met,
Theorems 3.1, 3.2 and S.1 are still valid. In this context, the minimizer of the rele-
vant function could be taken as its some local minimizer having some properties.
For the details, refer to Bai, Rao and Wu (1992).
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